Dissipativity and Gevrey Regularity of a Smoluchowski Equation

نویسندگان

  • PETER CONSTANTIN
  • JESENKO VUKADINOVIC
چکیده

We investigate a Smoluchowski equation (a nonlinear Fokker-Planck equation on the unit sphere), which arises in modeling of colloidal suspensions. We prove the dissipativity of the equation in 2D and 3D, in certain Gevrey classes of analytic functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propagation of Gevrey Regularity for Solutions of Landau Equations

There are many papers concerning the propagation of regularity for the solution of the Boltzmann equation (cf. [5, 6, 8, 9, 13] and references therein). In these works, it has been shown that the Sobolev or Lebesgue regularity satisfied by the initial datum is propagated along the time variable. The solutions having the Gevrey regularity for a finite time have been constructed in [15] in which ...

متن کامل

Propagation of Gevrey Regularity for Solutions of the Boltzmann Equation for Maxwellian Molecules

We prove that Gevrey regularity is propagated by the Boltzmann equation with Maxwellian molecules, with or without angular cut-off. The proof relies on the Wild expansion of the solution to the equation and on the characterization of Gevrey regularity by the Fourier transform.

متن کامل

The Gevrey Hypoellipticity for Linear and Non-linear Fokker-planck Equations

Recently, a lot of progress has been made on the study for the spatially homogeneous Boltzmann equation without angular cutoff, cf. [2, 3, 8, 22] and references therein, which shows that the singularity of collision cross-section yields some gain of regularity in the Sobolev space frame on weak solutions for Cauchy problem. That means, this gives the C regularity of weak solution for the spatia...

متن کامل

Existence and generalized Gevrey regularity of solutions to the Kuramoto–Sivashinsky equation in R

Motivated by the work of Foias and Temam [C. Foias, R. Temam, Gevrey class regularity for the solutions of the Navier–Stokes equations, J. Funct. Anal. 87 (1989) 359–369], we prove the existence and Gevrey regularity of local solutions to the Kuramoto–Sivashinsky equation in Rn with initial data in the space of distributions. The control on the Gevrey norm provides an explicit estimate of the a...

متن کامل

Global well posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D

We prove global existence for a nonlinear Smoluchowski equation (a nonlinear FokkerPlanck equation) coupled with Navier-Stokes equations in 2d. The proof uses a deteriorating regularity estimate in the spirit of [5] (see also [1]) Key wordsNonlinear Fokker-Planck equations, Navier-Stokes equations, Smoluchowski equation, micro-macro interactions. AMS subject classification 35Q30, 82C31, 76A05.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004